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Abstract 

There are four pillars of electron-correlation theory, i.e., configuration 

interaction (CI), coupled cluster (CC), many-body perturbation theory (MBPT), 

and many-body Green’s function (MBGF). Starting from the Hartree-Fock (HF) 

approx-imation to provide the more accurate approximations, which include 

the effects of electron-correlation, this article summarizes the pillars. 

 

Index Terms: configuration interaction; coupled cluster; many-body 

perturbation theories; many-body Green’s function 

 

1. CONFIGURATION INTERACTION 

The Hartree-Fock (HF) approximation is very success in many 

cases, however it has limitations. It predicts wrong results in the 

ordering of the ionization potentials of N2. To cope with this, the form 

of the spin orbitals is introduced in the restricted closed-shell HF 
method. The method is constrained to have the same spatial function 

for spin up and spin down. However, the method cannot describe the 

molecule dissociation into open-shell fragments, for instance, H2 → 

2H. To tackle this, different spatial functions for spin up and spin down 

are used in the unrestricted open-shell HF method. However, the last 

method is not accurate for resulting potential energy curves of such 

dissociations, because the HF energy E0 is an upper bound to the exact 

nonrelativistic energy E0 of the system [1]. 

Conceptually, the simplest way for obtaining the correla-tion energy between 

E0 and E0 is using the configuration interaction (CI) method [2]. The idea is to 

diagonalize the N-electron Hamiltonian in a basis of Slater determinants. In other 

words, the exact wave function as a linear combination of N-electron trial functions. 

If the basis are complete, then the exact energies are obtained not only for the 

ground state, but it is also for all excited states of the system [1]. 

Configuration interaction provides an exact solution of the many-body 

problem using the linear variational method. However, CI is not computationally 

practical, because CI can only handle a finite set of N-electron trial functions. In other 

words, CI only provides the upper bounds to the exact energies. To obtain a suitable 

set of N-electron trial functions, one can construct [
2𝐾

𝑁
] different N-electron Slater 

determinants for some arbitrary set of 2K one-electron spin orbitals. Unfortunately, 

the number of N-electron determinants is huge, although he only use small 
molecules and one-electron basis sets. If he uses a finite one-electron basis sets, then 
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he has to cut the trial function, and only use a fraction of possible N-electron 

functions [1]. 
 

2. COUPLED CLUSTER 
The energy of a system is part of a thermodynamic entity, so the amout of 

energy should be proportional to the number of particles. The configuration 
interaction makes prediction that, in this case of H2 molecules, if N becomes large 

then the correlation energy is proportional to √𝑁. However, CI is not a satisfactory 
method because the correlation energy per atom in a crystal is zero. So, there needs 
to be another method that explains the correlation energy in proportion to the 
number of particles. In other words, the method yields comparable results for 
different molecular sizes. For instance, the method gives the same results for 
reactants and products in the molecular dissociation reaction. Another example, 
supermolecular energy is the number of N monomers times the energy of each 
monomer. In general, the method must be size consistent because the energy 
calculation is directly proportional to the number of particles [1]. 

Fortunately, there are some theories that accommodate size consistency, i.e., 
pair and coupled-pair theories, and the per-turbation theory too. The pair theory 
describes electron pair interactions that occupy orbitals of spin Xa and Xb in the HF 
method. A scheme is necessary for approximating the pair energy from each of 
electron pair in order to reduce an N-electron problem to N(N-1)/2 two-electron 
problems. The scheme called the independent electron pair approximation (IEPA) 
is derived by O. Sinanoglu˘ [24]. However, the pair and perturbation theories are not 
variational, and the pair energy is smaller than the exact energy. In addition, the pair 
theory gives 120% energy bigger than the correlation energy [1]. 

Coupled pair theory describes coupling between electron pairs. Here J. C´ızekˇ 
used perturbation theory on the IEPA, and then he used the correlation function in 
the approximation to get the total energy [3]. However, the coupled pair theory is 
difficult because of its complexity. To solve the many-electron problem, one can use 
a fundamental approach. The approach is to express the quadruple coefficients as 
functions of the double coefficients. It means the excitation of the quadruple 
coefficient is simply the product of the excitation of two double coefficients. For 
instance, when two H2 molecules are separated by infinity, or independent in short, 
the dimer wave function can be written as a product of the monomer wave functions. 
In general, two electron pairs are independent, and the quadruple coefficient of 
excited configuration is equal to the product of the double coefficients of excitation 
[1]. 
 
3. MANY-BODY PERTURBATION THEORY 

Perturbation theory (PT) is a size consistent approach to calculate the 
correlation energy at each level. Unlike CI that is variational approach, Hamiltonian 
of a system in the PT is divided into two parts: a zeroth-order part H0, and a 
perturbation part V. To calculate the exact energy, one must sum an infinite series 
of increasing complexity contributions. 

The contributions are the H0 eigenvalues, and the perturbation matrix 
elements of the H0 eigenfunctions. The nth-order perturbation energy is a products 
of n matrix elements after grouping the same terms. The sum of the nth-order 
energies converges quickly if V is small, and H0 is wisely chosen [1]. 
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In time-independent framework, Rayleigh-Schrodinger¨ per-turbation theory 
(RSPT) is widely used [25]. Using the Hartree-Fock Hamiltonian as zeroth-order 
Hamiltonian in RSPT, C. Møller and M. S. Plesset implemented this H0 to the N-
electron systems. This method is called Møller-Plesset perturbation theory [4]. But 
in general, the method is called many-body perturbation theory (MBPT), because it 
is treated in infinite systems. Therefore, a novel theory is needed for treating large 
systems in the scheme of size consistent [1]. 

K. A. Brueckner stated MBPT in each order is size con-sistent [5]. He found that 
MBPT energies are proportional to N2 particles in large systems. For the first order, 
he showed that the infinite sum of contributions of increasing complexity can be 
cancelled, so it is true that MBPT in each order is size consistent. Unfortunately, he 
was not able to prove this for all the orders [1]. 

In quantum electrodynamics, R. P. Feynman worked out in a perturbation 
series at any order in order to get co-variant formulations [6]. Based on his work, J. 
Goldstone showed a clever way for representing algebraic expressions using 
diagrams [7]. The expressions usually occur in the Rayleigh-Schrodinger¨ 
perturbation expansion of the many-particle system energy. Unlike Brueckner, the 
infinite sum of contributions of increasing complexity are represented by diagrams 
formed of disconnected parts called unlinked. The unlinked contributions are 
actually can be cancelled in every order. This linked-cluster theorem states that 
linked diagrams represent the perturbation expansion of a many-body system 
energy. So, the Møller-Plesset perturbation theory is truly size consistent too [1]. 

Soon after Goldstone showed the pictorial techniques, H. P. Kelly implemented 
it to atoms [8]. He summed the certain diagram values to infinite order by 
incorporate certain contri-butions of increasing complexity in perturbation theory, 
rather than summing the perturbation energies up to second-order, and ignoring 
the higher order energies [1]. 
 
4. MANY-BODY GREEN’S FUNCTION 

In many-body theory, method of Green’s function is power-ful for treating 
large systems. At the beginning, the function is used for solving inhomogeneous 
differential equations. How-ever, the function can be used to calculate electron 
affinities (EA) and ionization potentials (IP) for one-particle of an N-electron system. 
So, the method is called the many-body Green’s function (MBGF). Using Koopmans’ 
theorem within the Hartree-Fock approximation, the method improves EA and IP in 
a systematic way [9]. In order to describe electron capture and ionization, 
information about the ground state energy and one-particle density matrix can be 
found in the method. However, the method is very different with other methods, 
because it can be presented using second quantization, without using diagrams like 
in the perturbation theory [1]. 

The time-dependent aspects of Green’s function theory were developed by N. 
N. Bogolyubov and S. V. Tyablikov[10]. They resolved problems in statistical physics 
using two-dimensional retarded and advanced Green’s functions. The ap-
proximation was implemented in the Kall¨en´-Lehmann spectral representation [11] 
[12], so one can comprehend the physically appealing interpretation of these 
functions as propagators [1]. 

To describe the excitation spectrum of an N-electron system, V. M. Galitskii 
and A. B. Migdal developed two-particle MBGF [13]. They relate the two-particle 
Green’s function with the kinetic equation, so one can calculate the total ground-
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state energy. In addition, they showed the poles of a single particle propagation 
function determine the energy of quasiparticles. 

The equation of motion of the Green function was developed by F. J. Dyson 
[14]. He developed a simple procedure for the Schwinger theory in radiation [15]. 
Further, this brought Dyson to derive scattering matrix element relations in quan-
tum electrodynamics in a perturbative approach [16], while Schwinger used 
variational principle in a non-perturbative approach [17]. 

It is known that the potential felt by an electron due to the surrounding 
medium’s interactions with it is called self-energy. To derive the self-energy, L. 
Hedin developed a set of equations which are self-consistent [18]. The equations are 
the self-energy , the screened coulomb interaction W, the polarizability P, and the 
vertex function . The equations are impossible to solve exactly for real systems, so 
he made a method called GW approximation. Here, is a screened exchange and 
correlation potential, while W is non-local in space and time. 

An interesting physical quantity in Hedin’s equation is the polarizability, or 
density response function. If a system of electrons is perturbed by an external field, 
then its density will change and can be calculated by the response function of the 
system. R. Kubo developed a mathematical formula to express the linear response 
of the physical quantity due to the perturbation [19]. Eventually, before the creation 
of the formula, D. Bohm and D. Pines has developed a method called random phase 
approximation to the linear response function using the equation of motion [20] 
[21] [22], while M. Gell-Mann and K. A. Brueckner used the many-body 
diagrammatic technique [23]. 
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